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We analyze the dynamics of the neural circuit of the lamprey central pattern generator. This analysis
provides insight into how neural interactions form oscillators and enable spontaneous oscillations in a
network of damped oscillators, which were not apparent in previous simulations or abstract phase
oscillator models. We also show how the different behavior regimes (characterized by phase and
amplitude relationships between oscillators) of forward or backward swimming, and turning, can be
controlled using the neural connection strengths and external inputs.
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phase oscillator model derived from a kinetic (Hodgkin-
Huxley) equation for neurons [6], and for a neural circuit
model similar to the one used in this Letter [7]. Extensive

FIG. 1. The lamprey CPG circuit. The solid lines and the
dashed lines denote intrasegment and intersegment connec-
tions, respectively.
Locomotion in vertbebrates (walking, swimming, etc.)
is generated by central pattern generators (CPGs) in the
spinal cord. The CPG for swimming in lampreys is one of
the best known [1,2], and has been a model system for
investigations. It produces left-right antiphase oscillatory
neural and motor activities propagating along a body
composed of around 100 segments. A head-to-tail nega-
tive or positive oscillation phase gradient, of about 1% of
an oscillation cycle per segment, gives forward or back-
ward swimming, respectively, and one wavelength from
head to tail. External inputs from the brain stem switch
the CPG between forward and backward swimming of
various speeds and turning. Since isolated sections of the
spinal cord, down to 2–3 segments long [2], can produce
swimminglike activity, the oscillations are thought to be
generated by the neurons within the CPG. The neural
circuit responsible is shown topologically in Fig. 1. It
has ipsilaterally projecting excitatory (E) neurons and
inhibitory (L) neurons, and contralaterally projecting
inhibitory (C) neurons, and provides output to motor
neurons via the E neurons. All neurons project both intra-
and intersegmentally. The projection distances are mainly
within a few segments, especially from E and C neurons,
and are longer, and possibly stronger, in the head-to-tail
or descending direction [1–3].

Previous analytical work [4,5] mainly treated the
CPG as a chain of coupled phase oscillators in a gen-
eral form _��i � !i �

P
jfij��i; �j�. Here �i is the oscilla-

tion phase and !i the intrinsic frequency of one segment,
and fij��i; �j� the intersegment coupling. This approach
provided important insight into the conditions for phase-
locked solutions in general systems of coupled oscillators.
However, its generality obscures the roles of specific
neural types and their connections in generating and
controlling behavior. More recently, bifurcation analysis
of the dynamics of a single segment was carried out, for a
0031-9007=04=92(19)=198106(4)$22.50 
simulations, including all neural types and detailed neu-
ral properties, have reproduced many features of experi-
mental data [1], though their complexity limits further
understanding.

In all previous approaches, it is assumed that a single
segment in the CPG can oscillate spontaneously, con-
trary to experimental evidence that at least 2–3 segments
are needed for oscillations [2]. We present an analytical
study, confirmed by simulations, of a model of the CPG
neural circuit in which an isolated single segment has a
stable fixed point, with spontaneous oscillations occur-
ring only in chains of coupled segments. The phase os-
cillator approach is not applicable here since it assumes
spontaneously oscillating individual segments perturbed
by intersegment coupling. Including specific cell types
and their connections enables us to analyze the role of
each of them in generating and controlling swimming.We
show how external inputs select forward and backward
swimming, by controlling the effective strengths of con-
nections between various neurons, and produces turning,
by additional input to one side of the CPG only. We also
analyze behavior near the body ends.

We model the CPG neural circuit with N � 100 seg-
ments denoted by i � 1; . . . ; N. The vector states
(El;Ll;Cl) and �Er;Lr;Cr�, modeling the membrane
potentials of the local populations of neurons at the left
and right side of the body, respectively, with El �
�E1

l ; E
2
l ; . . . ; E

N
l � etc., are modeled as leaky integrators

of their inputs:
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_EEl � �El � K0gC�Cr� � J0gE�El� � IE;l;
_LLl � �Ll � A0gC�Cr� �W0gE�El� � IL;l;
_CCl � �Cl � B0gC�Cr� �Q0gE�El� � H0gL�Ll� � IC;l;

(1)

with the same equation for swapped subscripts �l $ r�.
gE�El� � �gE�E

1
l �; . . . ; gE�E

N
l �� are the neural activities or

firing rates, as non-negative (sigmoidlike) activation
functions of El, and likewise for gC�Cl� and gL�Ll�. K0,
J0, A0, W0, B0, Q0, and H0 are N � N matrices of non-
negative synaptic strengths between neurons. IE;l, IL;l,
and IC;l are external inputs, including those from the
brain stem, assumed to be static. A left-right symmetric
fixed point � �EE; �LL; �CC� where � _EE; _LL; _CC� � 0 exists with
external inputs IE;l � �EEl � K0gC� �CCr� � J0gE� �EEl� (and
analogously for other I’s). Dynamics for small deviations
from � �EE; �LL; �CC� can be approximated linearly, and, with
a coordinate rotation �E�;L�;C�� 	 
�El;Ll;Cl� �

� �EE; �LL; �CC�� � 
�Er;Lr;Cr� � � �EE; �LL; �CC��, transformed into
two decoupled modes — the left-right synchronous mode
�E�;L�;C�� and the antiphase mode �E�;L�;C��.
Swimming entails �E�;L�;C�� oscillating with a wave-
length of one body length, while E�;L�;C� is damped.
The linearized equations are

_EE� � �E� � KC� � JE�;

_LL� � �L� � AC� �WE�;

_CC� � �C� � BC� �QE� � HL�;

(2)

where K 	 K0g0C� �CC�, A 	 A0g0C� �CC�, B 	 B0g0C� �CC�, J 	
J0g0E� �EE�, W 	 W0g0E� �EE�, Q 	 Q0g0E� �EE�, and H 	
H0g0L� �LL� are effective connection matrices, and the
g0�� � ��’s denote derivatives. The C neurons thus become
effectively excitatory in the antiphase mode. Noting that
the lengths of the neural connections are much shorter
than the body, and that isolated sections of the spinal
cord from any part of the body generate oscillations
with similar amplitude and phase relationships [1,2], we
make the approximation of translation invariance, so
that matrix elements such as Jij depend only on (i� j),
and impose the periodic boundary condition, Jij � J�x�,
where x � �i� j� modN. This is adequate when behav-
ior near body ends is not considered. Then all connec-
tion matrices commute with each other, with common
eigenvectors (expressed as functions of segment num-
ber x) 
E�x�;L�x�;C�x�� / ei�2�m=N�x for integer eigen-
mode �N=2<m � N=2. The system solutions are thus
combinations of modes 
E��x; t�;L��x; t�;C��x; t�� /
e�

�
mt�i�2�m=N�x, where ��

m is the eigenvalue of Eq. (2) for
mode m. Forward swimming results if the real part
Re���

m�< 0 for all modes except the antiphase mode
with m � 1, i.e., Re���

1 � > 0. Then this mode dominates
the solution (whose growing amplitude will be con-
strained by nonlinearity) 
E�x; t�;L�x; t�;C�x; t�� /
eRe��

�
1 �t�i�!t�kx�, with oscillation frequency ! 	

jIm���
1 �j and wave number k � 2�=N. Using the con-

vention e�i!t for oscillations, we omitted the solution
198106-2
/eRe��
�
1 �t�i!t in the conjugate pair of eigenvalues. To

simplify our system, we note from experimental data
that, in forward swimming, E and L oscillate roughly
in phase within a segment, while C leads them [2]. We
scale our variable definitions so that E� � L� in for-
ward swimming. Then Eq. (2) implies that �K� A�C� �
��J�W�E� in forward swimming. Since E and C have
much shorter connections than the wavelength of oscil-
lations during swimming, the connection matrices have
zero elements far from the diagonal, making �K� A�C�

and �J�W�E� roughly either in phase or in antiphase
with C� and E�, respectively. As C� phase leads E�,
�K� A�C� � ��J�W�E� is impossible unless �J�
W�E� � �K� A�C� � 0. For simplicity we henceforth
assume J � W and K � A, since nonswimming modes do
not concern us. Consequently E� � L� and

�
_EE�
_CC�

�
�

�
J� 1 �K

��H�Q� �B� 1

��
E�

C�

�
; (3)

where L and E are treated as a single population inhibit-
ing or exciting C via connections H�Q. The eigenvalues
for mode m are

��
m � 
�2� Jm � Bm �

�������������������������������������
Rm � 2�B2

m � J2m�
q

�=2;

��
m � 
�2� Jm � Bm � i

�������
Rm

p
�=2:

(4)

Jm 	
P

xJ�x�e
�i�2�m=N�x is the eigenvalue of J (and anal-

ogously for other matrices), and Rm is the eigenvalue of
R 	 4K�H�Q� � �B� J�2.

To elucidate the conditions needed for the antiphase
mode with m � �1 for forward or backward swim-
ming to dominate, we analyze the bifurcations which
occur as ��

m for each mode (m;�) changes as the effec-
tive neural connections are varied, either directly or via
the external inputs. First, we focus on the left-right mode
space (as in [6,7] for a single segment) of � and �, i.e.,
the synchronous and antiphase modes, by simply taking
m � 0. Then, J0, B0, H0, K0, and Q0, are all real and non-
negative, each being the total connection strength on a
postsynaptic cell from all cells of a particular type.
Oscillation in the antiphase mode requires R0 > 0, neces-
sitating H0 > Q0, or that, in the ac component of inter-
actions above the background dc level, C neurons receive
stronger inhibition from L neurons than excitation from
E neurons. Consequently, ��

0 is real and the synchronous
mode is nonoscillatory. As neural connections increase
from zero, the antiphase mode undergoes a Hopf bifurca-
tion when Re���

0 � � 0, at J0 � B0 � 2, and the synchro-
nous mode undergoes a pitchfork bifurcation when
��
0 � 0, at �B0�1��1�J0��K0�H0�Q0�. Oscillations

result if the Hopf bifurcation has occurred but the pitch-
fork bifurcation has not, i.e., Re���

0 � > 0 > ��
0 . The

condition ��
0 < 0 implies �B0 � 1��1� J0� > K0�H0 �

Q0�, necessitating J0 < 1. Meanwhile, Re���
0 � > ��

0

leads to B0 >
����������������������
J20 � R0=2

q
> J0, thus requiring sufficient

inhibitory connections between left and right C cells.
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The J, W, and Q connections from E cells have to be
relatively weak, consistent with the findings of [7].

Assuming the synchronous mode is damped, we focus
now on the antiphase mode in the m mode space. Hopf
bifurcations occur sequentially in various modes m in the
order of descending Re���

m�. Taylor expanding Jm (and
similarly Bm; Rm) for small wave number k � 2�m=N as
is relevant for swimming, Jm � j0 � ikj1 � k2j2 �O�k3�
with jn �

P
xJ�x�

xn
n! , we have

2Re
���k�� � � 2� j0 � b0 � kr1=�2
�����
r0

p
�

� k2�j2 � b2� �O�k3�;

2Im
���k�� �
�����
r0

p
�O�k�;

(5)

making the mode with k � �r1=
4
�����
r0

p
�j2 � b2��

dominant with the largest Re
���k��. From the
definition, �r0; j2; b2� � 0, while stronger and/or longer
connections in the descending direction imply
�j1; b1� > 0. Simply, J (and similarly for other matrices)
is said to be descending (or ascending) if j1 > 0 (or
j1 < 0). Hence, if R is ascending, i.e., r1 < 0, Re
���k��
increases with increasing k, and the dominant wave num-
ber can be set to k � 2�=N for mode m � 1 by tuning the
values of R, J, and B. If the connection strengths are such
that only the m � 1 mode undergoes the Hopf bifurca-
tion, forward swimming emerges spontaneously.
Switching R to descending leads to backward swimming.
Note that J, B, H, K, and Q are all descending, multi-
plications and summations of descending connections are
still descending, and negating a descending connection
makes it ascending. Since B and H have to dominate J and
Q, respectively, R is composed of an ascending term
��B� J�2 and a descending term 4K�H�Q�. Depend-
ing on the relative strengths of these two terms, R can
be ascending or descending to achieve forward or
backward swimming. This could be achieved by chang-
ing the static inputs to shift the fixed point � �EE; �LL; �CC� of
the system to a different gain regime g0E� �EE�; g

0
L�

�LL�;
g0C� �CC�, and thus different effective connection strengths
H � H0g0L� �LL�, etc., without changing the underlying
strengths H0, etc. Alternatively, the external inputs might
recruit extra functional cells to alter the effective con-
nection strengths [8].

When additional modes satisfy Re���
m� > 0, the

dynamics depends on the nonlinear coupling be-
tween modes. For illustration, consider nonlinearity
only in gC�C�.

_EE� � �E� � K0g��C� � JE�;

_LL� � �L� � A0g��C� �WE�;
_CC� � �C� � B0g��C� �QE� � HL�;

(6)

where g��C� � 
gC�Cl� � gc� �CC�� � 
gC�Cr� � gc� �CC��. If
the nonlinearity is of the form gC�x� �CC� � gC� �CC� � x�
ax2 � bx3 �O�x4�, we have
198106-3
g��C��C��aC�C��bC3
�=4�3bC�C

2
�=4;

g��C��C��aC2
�=2�aC2

�=2�bC3
�=4�3bC�C2

�=4:

Hence, whenC��0,C� cannot excite it since g��C��0.
However, if a � 0, the synchronous mode will be excited
passively by the antiphase mode through the quadratic
coupling term aC2

�=2, responding with double frequency,
as could be tested easily.

To analyze coupling between the antiphase modes,
we assume for simplicity that gc�x� �CC� � gc� �CC� is odd
in x, so C� � 0 since the synchronous mode is damped,
and g��C�� � 2gC�C�=2�. Consider a small perturba-
tion, in the m0 mode direction, to the m � 1 cycle (the
final orbit resulting from a small deviation from the fixed
point in the m � 1 mode, with a fundamental harmonic
in the m � 1 mode) such that C��x� � C1 cos�2�x=N� �
Cm0 cos�2�m0x=N�, with Cm0 � C1. Expressing g��C� as
g��C� �

P
ngne

i2�nx=N, it can be shown that for large N,
gm0 � Cm0 �gg0C where �gg0C is the derivative of gC aver-
aged over the unperturbed cycle. (More details will
be given in a future paper.) Because of the sigmoid
form of gC�C�, �gg0C < g0C� �CC�. Then Cm0 / e�

�
mt with

��
m0 , as in Eq. (4) except that �Bm0 ; Km0 �, values derived

from connections from C cells, are rescaled by a factor
�gg0C=g

0
C�

�CC�< 1. Thus the swimming cycle at large am-
plitude remains stable against perturbation in other
modes, even when the fixed point is unstable against these
perturbations.

If Re���
1 � � Re���

m0 � * 0, the m0 cycle will have a
small amplitude and hence �gg0�C� � g0� �CC�, and it will be
unstable against perturbation in the m � 1 mode. For
larger Re���

m0 � the amplitude of the cycle is larger and
either cycle will be stable. Suppose the neural connections
are such that the m � �1 cycles, giving forward or back-
ward swimming, are both stable. The system would then
display hysteresis, with the final behavior depending on
the initial conditions. Forward or backward swimming
could then be selected by transient inputs from the brain
stem, rather than by setting constant inputs as described
above. This seems less likely to be the actual selection
mechanism since experiments on fictive swimming (pre-
sumably with random initial conditions) seldom observe
spontaneous backward swimming. However, the forward
swimming could simply have a larger basin of attraction
than backward swimming.

When the lamprey turns, average neural activities on
the left and the right sides are unequal. This is realizable
by adding an additional constant input to one side in the
animal and in models [8,9]. This does not disrupt the
oscillations provided that the gains g0�� � �� are roughly
constant near the fixed points. Simulations (Fig. 2) con-
firm the analysis above.

To study behavior at the body ends or in short sections
of the spinal cord [1], or equivalently to see the effects of
longer connections, we abandon translation invariance.
Eliminating C in Eq. (3), the minus mode has
198106-3
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�EE� �2� J� B� _EE� 
1� J� B� BJ� K�H�Q��E � 0;

or oscillator i is driven by force Fi from other oscillators,

�EEi � �2� Jii � Bii� _EEi � 
1� ~RRii�Ei � Fi 	
X
j�i

Fij 	
X
j�i

�Jij � Bij� _EEj �
X
j�i

~RRijEj;
where ~RR � B� J� BJ� K�H�Q�. The intrinsic oscil-
lation, Ei�e�t, is damped, Re��� � �1� �J� B�ii=2<
0, as indicated by experiments [1,2]. We estimate Fi using
the approximation that oscillators j � i still behave as
Ej / e�i�!t�kj�. We then have Fi � $i

_EEi � %iEi, where

$i 	
X
j�i

f�J� B�ij cos
k�j� i�� � ~RRij sin
k�j� i��=!g;

%i 	
X
j�i

f�J� B�ij! sin
k�j� i�� � ~RRij cos
k�j� i��g:

The term $i
_EEi when $i > 0 feeds oscillation energy into

the ith (receiving) oscillator, causing emergent oscilla-
tions in coupled damped oscillators. We divide $i �
$i;desc � $i;asc into the descending and ascending parts,
with summations over

P
j<i and

P
j>i, respectively.

Hence, for i � 1, $1 � $i;asc, for i � N, $N � $i;desc,
and for 1 � i � N, $i � $1 � $N . Since the first and
last segments oscillate due to the driving force from other
oscillators,$1 > 0 and$N > 0. Consequently,$1 <$N=2
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FIG. 2 (color online). Simulations. (a) Membrane potentials
of E population on either side of one segment during forward
swimming and turning. Turning is induced by an additional
constant input to one side only, starting at the time indicated by
the dashed line. (b) C slightly phase leads E during forward
swimming. (c),(d) Waveform of E along the body in forward
and backward swimming, at consecutive times increasing in
the direction indicated by the arrows, in the translational
invariant model. The switch from forward to backward swim-
ming is achieved by increasing the strength of H and Q.
(e) Oscillation waveforms (note different amplitudes) in body
segments at head, tail, and center of the body, without trans-
lational invariance. (f) Forward and backward swimming from
different initial conditions, with the same connection strengths
and inputs.
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and $N < $N=2. Further, since descending connections
are stronger, it is most likely that, for 1 � i � N,
$i;desc > $i;asc. Consequently, $1 <$N . Hence, the ros-
tral oscillator has a smaller amplitude than the caudal
one, which in turn has a smaller amplitude than the
central one [Fig. 2(e)]. Firing rate saturation and varia-
tions of the fixed point along the body may obscure this
pattern in experimental data, although body movements
are indeed smallest near the head [10]. Similarly, oscil-
lation amplitudes will be reduced in sections of spinal
cords shorter than the typical lengths of intersegment
connections, and will eventually be zero in ever shorter
sections, as observed in experiments [2].

In summary, analysis of a model of the CPG neural
circuit in lampreys has given new insights into the neural
connection structures needed to generate and control the
swimming behavior. In particular, we predict that the
contralateral connections between C must be stronger
than the self-excitatory connection strength of the E
neurons, that the C neurons are more inhibited (in their
ac components) by L neurons than excited by the E
neurons, and we have shown how different swimming
regimes can be selected by scaling the strengths of the
various neural connections without changing the connec-
tion patterns. Our framework should help to provide
further insights into CPGs of animal locomotion.
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