The neural circuits for motor control

Dancing scene from mastaba of mereruka

Andy Murray a.murray@ucl.ac.uk SWC Room 284

Outline

• Today

- Why motor control is the most important topic in neuroscience
- Types of motor circuits
- The spinal cord, locomotion and central pattern generators
- Subconscious motor pathways

- Friday 11th Nov
 - Conscious motor pathways
 - Feedback and feedforward control
 - Error signalling and motor learning

Why is motor control important?

1. It's the only reason we have a brain

Why is motor control important?

2. We have a reasonable chance of understanding the neural circuitry and computation

- We understand the problem
- We understand how the problem can be solved (number of muscles that are controlled, how muscles are activated etc.)

• As motor control is all the brain does, if we understand the (tractable) then (to some extent) we understand the brain

Levels of motor circuit

Simple motor control is based on rhythmic movements

The spinal cord

The locomotor step cycle

Four phases of the step cycle

The locomotor step cycle

How many muscles are there in one mouse hindlimb?

Muscles and motor units

Motor neurons are organised in "pools"

Surmeli et al., 2011

Motor neurons drive muscle contraction

Title

Monitoring limb position via proprioception

Muscle activation and proprioception

Sensory pathways could drive rhythmic firing in the spinal cord

The spinal cord can generate rhythmic firing of motor neurons

Machado et al., 2015

Locomotion is based on rhythmic movements generated in the spinal cord

T. Graham Brown

8. The experiments seem to show that the fundamental unit of activity in the nervous system is not that which we term the spinal reflex. They show the independence of the efferent neurone, and suggest that the functional unit is the activity of the independent efferent neurone; or rather, that it is the mutually conditioned activity of the linked antagonistic efferent neurones ("half-centres") which together form the "centre": and they also suggest that the primitive activity of the nervous system is seen in such rhythmic acts as progression and respiration.

Brown, 1914

The spinal cord can generate rhythmic locomotion

Rossignol and Bouyer, 2004

The central pattern generator

How do neural circuits generate rhythmic firing?

1. Reflex pathways

- 2. Pacemaker neurons
- 3. Reciprocal inhibition

Pacemaker neurons

Crustacean stomatogastric ganglion

Respiratory centres

Volume 11, Issue 23, 27 November 2001, Pages R986-R996

Review Article

Central pattern generators and the control of rhythmic movements

 Read & annotate PDF
 +
 Add to colviz

 Eve Marder
 •
 , Dirk Bucher

 •
 Show more

http://dx.doi.org/10.1016/S0960-9822(01)00581-4

Under an Elsevier user license

Reciprocal inhibition

F-MN

We still don't know the neuronal basis for rhythm generation in the spinal cord

Spinal cord is (probably) a network oscillator modulated by sensory feedback

Proprioception modulates the step cycle

When do we need the brain?

- 1. When something unexpected happens
- 2. When we want conscious control over our movements

Activation of spinal CPGs – the mesencephalic locomotor region

The MLR is conserved across species

Animal movement must be continuously flexible

Da Vinci, ~1500

Borelli, 1681

Marey, 1873

Adaptive motor control

a snapshot of 27 descending tracts....

"classical"					"modula	"modulatory"	
cortico-	rubro-	tecto-	reticulo-	vestibulo-	thalamo-	coeruleo-	raphe-
•	•	•	•	•	\bigcirc	•	•

Adaptive motor control

a snapshot of 27 descending tracts....

"classical"					"modula	"modulatory"	
cortico-	rubro-	tecto-	reticulo-	vestibulo-	thalamo-	coeruleo-	raphe-
•	•	•	•	•	\bigcirc	•	•

Descending tracts are anatomically organised

Subconscious motor tracts (extrapyramidal) - regulation of balance, muscle tone, eye, hand and upper limb position

> Vestibulospinal Tectospinal Reticulospinal

Conscious motor tracts (pyramidal) Corticospinal

Postural control is an active process that requires descending commands

Postural control is an active process that requires descending commands

Macpherson and Fung, 1999

Postural control is an active process that requires descending commands

Postural control requires sensory motor integration

Deliagina et al., 2012

Postural control and balance – you only notice when it's not there

Courtesy of Prof. Fay Horak, OHSU

Postural pathways

Deliagina et al., 2014

Originate in the PRN and MRN, and project in the medial longitudinal fasciculus

Pontine reticular nucleus

Medullary reticular nucleus

excite both extensors and flexor motor neurons

TABLE 1. Effect of stimulation of Deiters' nucleus and medial longitudinal fasciculus (MLF-RF) on hindlimb motoneurons

	Extensors				Flexors	
	GS	FDL-PL	BASM	PLANT	BST	PER
Monosynaptic EPSP						
Deiters' only MLF-RF only	14/38 10/38	$\frac{1}{25}$ 16/25	0/10 10/10	1/5 2/5	0/13 10/13	0/10 9/10

have diffuse projections into the spinal cord

Liang et al., 2015

A subset of reticulospinal neurons respond to postural perturbation

Stapley and Drew, 2009

Vestibulospinal tracts

Maintain balance and posture using rotation and acceleration of the head

The lateral vestibular nucleus projects to all spinal levels

Assaying balance in the mouse

Assaying balance in the mouse

Mice can efficiently compensate for balance perturbations

Responses to a balance perturbation have two phases

Selective ablation of LVN_{lumbar} neurons

Vestibulospinal neurons are not required for treadmill locomotion

LVN_{lumbar} ablation causes poor reflexive balance control

LVN_{lumbar} ablation causes poor reflexive balance control

50

25

Time from perturbation (ms)

Change in joint angle (o)

201

10

0

LVN^{lumbar} ablation (right)

Top view

Sainsbury Wellcome Centre

LVN_{lumbar} ablation abolishes both early and late phase responses

Possible circuits originating in the LVN

Defining LVN cell-types

Extensor MN

LVN_{lumbar} = all LVN neurons projecting to lumbar spinal cord

 $LVN_E = LVN$ neurons innervating MNs

LVN inputs are restricted to extensor motor neurons

Positional analysis of LVN_E neurons shows restricted cell body position and terminal projections

Distance from bregma (mm)

LVN_E terminals in the spinal cord

Activation of postural responses is context dependent

A vestibulospinal-reticulospinal circuit for long-latency postural responses

ΕM

GS

BF

L

50

Time from perturbation (ms)

100

The LVN innervates both the MRN and PRN

Photostimulation of LVN-PRN neurons activates hindlimb muscles

Reticulospinal neurons are also required for postural reflexes

Control

PRN-spinal ablation

Reticulospinal neurons generate a different phase of postural responses to vestibulospinal

Flexor

A postural response involves different brain areas, inputs and descending pathways

